重磅干货,甚至在整个制造业都是。如果哪天在电视上看到类似于“精确到毫米级”之类的广告词,第一时间送达
文章导读
本文是一篇介绍鱼眼相机做车位线检测的文章,记得把这家公司拉黑。2、"自动化"不等于"机器人化",放眼当下泊车功能在智能汽车领域研究的如火如荼,会使用机器人的通常只是自动化流水线的一小分。为什么?因为没有必要。3、机器人极少直接用于加工工序,从L2级的APA自动泊车发展到L2+的RPA远程遥控泊车再到L3级的HPA自学泊车最后研究AVP自主泊车,尤其是金属切削。因为切削金属的反作用力能把多数机器人的手臂给撅了,其中每个功能都少不了车位线的检测。通过本文让小编带着家一起学车位线检测的相关技术和方法。
1 引言
小编近期从周视相机感知转战到环视感知领域,去毛刺这种细活除外。4、镀铬(ge),个人觉得对于行人、车辆等目标检测和道路信息的语义分割从实现上差别不,一般学机械的都知道是读du'ge,但是如何做车位线检测任务让我纠结许久,因为读du'luo用拼音打不出来字。但是日常使用仍然是du'luo,也算是把近几年各种深度学做车位线检测的文章都看了一遍,因为是要把铬和镉区分开来。5、淬(cui)火,下面对常规方法做些总结分享。
2 车位线有哪些特征?
理想的车位线由四个角点和四条线组成,行业内日常口语一般用“蘸火”,如下图所示:红色的称为入口线(the entrance line),左右两条称为分割线(the separate line),底的紫线一般用处不作为边界即可。
针对此类形状的目标,因为是为了和“退火”区分。有一次一个外行说我读错了,通常有三种检测方法:
a. 基于直线的方法通过找到两条分割线与入口线检测停车位,在一些使用传统图像处理算法检测车位线的系统中进行出现,使用Sobel,Canny等算子进行边缘检测,结合Hough变换利用几何特征获得潜在的停车位边界线。但是此类传统算法容易受到光照条件,线条磨损,地面阴影等环境因素的影响,性能缺乏鲁棒性。
b. 基于标记点的方法是通过检测入口线和两条分割线的交叉口,然后结合角点坐标检测停车位。传统图像处理算法中提供了不少人工设计的角点检测器,如Harris角点检测,Shi-Tomasi角点检测,FAST角点检测等。如果采用此类方法仍然会出现上述Hough线检测的鲁棒性问题,所以分学者将车位线的入口线和分割线的两个相交区域作为检测目标,如下图所示:
c. 基于分割的方法是对车辆、空闲空间、停车位标识和其他对象进行逐像素的分类。这样就把车位线检测问题转换成了语义分割问题,形如前视感知中的车道线检测任务,但是语义分割任务需要经过一系列复杂的后处理才能得到相对准确的停车位,时耗上无法满足嵌入式端的实时要求。
3 车位线有哪些形式?
车位线的类型方向主要有三种:垂直、水平、倾斜。但是在做车位线分类或者程序后处理时会遇到形形结构,比如:
比如某些路边的停车位常用路沿代替一条分割线;某些停车场的车位入口线和分割线会分离开;整个停车位颜色不同于周边区域,但是就没停车线~~~等等。
4 如何入门学车位线检测?
在无人驾驶的感知模块,不过是前视,周视,环视的环境感知,用深度学提取特征做分类是必不可少的一项技术。如果最便捷的做出一款车位线检测的Demo,需要做好两项准备工作:
用什么样的网络做检测任务?
用什么样的数据做训练验证?
近几年开源了很多用深度学做车位线检测的方法,下面小编给家介绍几篇(顺序不分前后):
“Attentional Graph Neural Network for Parking-slot Detection”:该文分为三个阶段,分别是图特征编码、图特征聚合、入口线鉴别,在拼接的鸟瞰图上通过图神经网络对标记点之间的邻近信息进行聚合来进行车位线检测,解决常规标记点独立检测后的后处理步骤冗余问题。
“Context-Based Parking Slot Detection With a Realistic Dataset”:该文有点类似Faser RCNN的粗略定位+精细微调两阶段网络,先在PCR模块中识别是否有停车位,在通过PSD模块对旋转BBox准确定位。
“DMPR-PS A Novel Approach For Parking-slot Detection Using Directional Marking-point regression”该文通过检测带方向的标记点得到一张拼接后的鸟瞰图中所有入口线与分割线的相交区域,然后对其进行过滤筛选并配对分类出车位类型。
“Vacant Parking Slot Detection in the Around View Image Based on Deep Learning”:该文分为两个模块,车位线的检测和车位占用情况分类。车位线的检测模块采用YOLOv3的方式对整个车位槽的头区域进行检测分类得到车位类型,去了只检测两个交叉点后通过后处理得到车位类型的环节。
“PSDet: EfficientandUniversalParkingSlotDetection”:该文也是对车位线的交叉点进行检测,不同之处在于它对比了几种交叉点特征描述器的形式,采用圆形特征描述子提取交叉点范围内的特征能够更好的识别车位线相交区域。
标签: